Transforming growth factor-beta signaling-deficient fibroblasts enhance hepatocyte growth factor signaling in mammary carcinoma cells to promote scattering and invasion.
نویسندگان
چکیده
Fibroblasts are major cellular components of the tumor microenvironment, regulating tumor cell behavior in part through secretion of extracellular matrix proteins, growth factors, and angiogenic factors. In previous studies, conditional deletion of the type II transforming growth factor-beta (TGF-beta) receptor in fibroblasts (Tgfbr2FspKO) was shown to promote mammary tumor metastasis in fibroblast-epithelial cell cotransplantation studies in mice, correlating with increased expression of hepatocyte growth factor (HGF). Here, we advance our findings to show that Tgfbr2(FspKO) fibroblasts enhance HGF/c-Met and HGF/Ron signaling to promote scattering and invasion of mammary carcinoma cells. Blockade of c-Met and Ron by small interfering RNA silencing and pharmacologic inhibitors significantly reduced mammary carcinoma cell scattering and invasion caused by Tgfbr2FspKO fibroblasts. Moreover, neutralizing antibodies to c-Met and Ron significantly inhibited HGF-induced cell scattering and invasion, correlating with reduced Stat3 and p42/44MAPK phosphorylation. Investigation of the signal transducer and activator of transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) signaling pathways by pharmacologic inhibition and small interfering RNA silencing revealed a cooperative interaction between the two pathways to regulate HGF-induced invasion, scattering, and motility of mammary tumor cells. Furthermore, whereas c-Met was found to regulate both the Stat3 and MAPK signaling pathways, Ron was found to regulate Stat3 but not MAPK signaling in mammary carcinoma cells. These studies show a tumor-suppressive role for TGF-beta signaling in fibroblasts, in part by suppressing HGF signaling between mammary fibroblasts and epithelial cells. These studies characterize complex functional roles for HGF and TGF-beta signaling in mediating tumor-stromal interactions during mammary tumor cell scattering and invasion, with important implications in the metastatic process.
منابع مشابه
Enhanced hepatocyte growth factor signaling by type II transforming growth factor-beta receptor knockout fibroblasts promotes mammary tumorigenesis.
Transforming growth factor-beta (TGF-beta) plays complex dual roles as an inhibitor and promoter of tumor progression. Although the influence of the stromal microenvironment on tumor progression is well recognized, little is known about the functions of TGF-beta signaling in the stroma during tumor progression. Using cre-lox technology, expression of the type II TGF-beta receptor was selectivel...
متن کاملEnhanced Hepatocyte Growth Factor Signaling by Type II
Transforming growth factor-B (TGF-B) plays complex dual roles as an inhibitor and promoter of tumor progression. Although the influence of the stromal microenvironment on tumor progression is well recognized, little is known about the functions of TGF-B signaling in the stroma during tumor progression. Using cre-lox technology, expression of the type II TGF-B receptor was selectively knocked ou...
متن کاملTGF-β Mediated Crosstalk Between Malignant Hepatocyte and Tumor Microenvironment in Hepatocellular Carcinoma
In this article, we have reviewed current literature regarding the regulation of hepatocellular carcinoma (HCC) by the interaction of malignant hepatocytes and their tissue environment through cytokine signaling, here represented by transforming growth factor-beta (TGF-β) signaling. We have discussed responses of TGF-β signaling in transition of hepatic stellate cells to myofibroblasts (MFBs), ...
متن کاملTGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia.
Stromal cells can have a significant impact on the carcinogenic process in adjacent epithelia. The role of transforming growth factor-beta (TGF-beta) signaling in such epithelial-mesenchymal interactions was determined by conditional inactivation of the TGF-beta type II receptor gene in mouse fibroblasts (Tgfbr2fspKO). The loss of TGF-beta responsiveness in fibroblasts resulted in intraepitheli...
متن کاملNanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells
Background: Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomeras...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 6 10 شماره
صفحات -
تاریخ انتشار 2008